
Scaling Aerospike
Lessons for Data-Intensive Application Developers

Duration of the Task

The Illusion

The Reality!

The Illusion

Aerospike NoSQL Database

All rights reserved. © 2023 Aerospike, Inc.

Efficient

• Low cost.

• Use resource efficiently.

• High Availability with RF=2.

• Reduce CO2 emissions!

§

Interoperable

• Key/value, document, graph.

• Kubernetes Operator.

• AWS Graviton compatible.

• Kafka, Spark, Pulsar, Trino,
Elasticsearch integration.

• Serves data from disk with
speed similar to a Cache.

• Handles high throughput.

• Scales From GB to PB.

• Predictable performance.

Performant Highly Available

• Resilient.

• Self-healing Capability.

• Multi-DC Replication.

• Rack/AZ Awareness.

Software Design

• Software design is a practice in prioritisation of competing concerns.

• When prioritising, some trade-offs have to be made.

• Trade-offs cause imperfections!

• Two solutions may solve the same problem, but they have different imperfection.

Example: High-Availability Trade-Off/Imperfection

When building a Highly Available distributed system, would you design it to be:

1. Efficient during failures, but only effective during normal times.

2. Efficient during normal times, but only effective during failures.

“It Depends!” 󰤇
Let’s have a look at AWS SLAs:

• EC2 instance level uptime during a month: 99.5% (Uptime: 716:20, Downtime: 3:36)

• EC2 region level uptime during a month: 99.99% (Uptime: 719:56, Downtime: 0:04)

Demystifying
Aerospike
Architecture

…

DC N

…
Rack 1 Rack N

DC 1

…
Rack 1 Rack N

Data Distribution

…

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 40
72

40
73

40
74

40
75

40
76

40
77

40
78

40
79

40
80

40
81

40
82

40
83

40
84

40
85

40
86

40
87

40
88

40
89

40
90

40
91

40
92

40
93

40
94

40
95

 4096 Partitions

A B A C C B A C B A B C A B C A C B C A C B B A A B A C C B A C B A B C A B C A C B C A C B B A

Nodes: A, B, C

Node Architecture

Primary Index:

S
econdary Index 1

…

…

Write-Block:

Partition N:

Partition M:

S
econdary Index N

Primary Index:

S
econdary Index 1

…

S
econdary Index N

…

…

Write-Block Magic

• A Write-Block gets flushed to the disk:
i. Overwritten In-place: every second.
ii. Immutably: When it doesn’t have enough space for a new record.

• Write-Block guarantees both durability and fast access on disk.
databases write the data on the disk twice:

i. Durability (eg. OpLog, WriteAheadLog, CommitLog, Journal)
ii. Fast access (Some kind of B-Tree or B+Tree)

• Some other benefits of Write-Block:
i. Because Write-Block size is fixed, recovering and reusing space is simple.
ii. Disk would never need to be defragged.

The Result

All rights reserved. © 2023 Aerospike, Inc.

https://docs.google.com/file/d/1Id9MXDBQ1wDiRL4tu22GBc1uEJN1Nmxb/preview
https://docs.google.com/file/d/1Id9MXDBQ1wDiRL4tu22GBc1uEJN1Nmxb/preview

* This example can be presented to you as a live demo upon request.

Instance Name vCPU Count Memory (GB) Storage (GB)
i4i.4xlarge 16 128 3750

Node Count RF Capacity (TB) Throughput
4 2 3 600 K TPS

Region AWS Annual Reserved Cost
London $36,282
Ireland $34,483
Ohio $31,203

Example ⃰ of Performant and Efficient

Thank you :)

https://developer.aerospike.com

https://github.com/aerospike-examples

https://docs.aerospike.com

